Using Argon Plasma Coagulation in GI and Pulmonary
Objectives

• Discuss the history of Electrosurgery and Argon Plasma Coagulation (APC), the variables involved and how it is used therapeutically.

• Describe the basic properties and components of APC.

• Describe clinical indications of APC in GI and Pulmonary, proper technique and how to apply it safely.

• Discuss special nursing considerations in promoting optimal outcomes.
History of Electrosurgery
Electricity Becomes Electrosurgery
in Europe, 1923

Galvanocautery - Hot wire

Battery and Coil

Vacuum Tube - 1923

1847 - 1882
Christian Heinrich ERBE

1882 - 1907
Christian Gottfried ERBE

1907 - 1962
Christian Otto ERBE
Electricity Becomes Electrosurgery
in the US, 1926

Father of American Neurosurgery
Harvey Cushing, MD

William T. Bovie, PhD.
History of Argon Plasma Coagulation (APC)

- J L Glover, MD first began using a “plasma scalpel” in 1971
- APC was first used clinically in open surgery, shortly thereafter in laparoscopic and thoracoscopic surgeries
- In 1991, specialized probes enabled the use of APC in flexible endoscopy
1978 J.L. Glover, MD

“There is no group of instruments in the surgical armamentarium that is used as frequently and understood as poorly as Electrosurgery units....”
We are educated...

> Formalized Education on Electrosurgery

Survey of 400 Surgeons
This Happened to *Experts*?
The Clinical Circuit

Circuit - flow of current from the ESU to the active electrode, to the patient, to the pad, and back to the ESU

Three variables always present during electrosurgery:

- **Current** – flow of electrons through the electrical circuit
- **Voltage** - electrical force pushing current around the circuit, through varying degrees of tissue resistance
- **Impedance** (Resistance) - literally the tissue being treated, which has varying characteristics
Two Basic Principles of Electricity

- Always seeks ground
- Always seeks the path of least resistance
GI Endoscopy Pad Placement

- Well vascularized area
- Shortest circuit possible
- Optimum – on flank
- Alternatives – Thigh or Arm
- Avoid Buttock placement
- Remove pads carefully to prevent shearing of skin
Pad Placement Exceptions

- **Fluro procedures**
 - ERCP
 - Pulmonary

- **Pacemaker / AICD / IED Patients**

 - Draw current AWAY from implanted device

 - Pad placement opposite side of body, lower extremity if possible
The Electrical FREQUENCY Spectrum

(Why patients do not feel electrosurgery?)

- 60 Hz: Household
- 100,000 Hz: Neuromuscular stimulation
- 350,000 Hz: ESU’s
- 54-880 MHz: TV
- 550-1550 kHz: AM Radio
Argon Plasma Coagulation

APC is a non-contact monopolar application
Properties of Argon Gas

Properties:

- Non-flammable
- Non-toxic
- Colorless, odorless, tasteless
- Ionizes easily
- Relatively inexpensive
- Noble gas – very stable
- 99.99% pure
Argon Plasma Coagulation

APC is a monopolar application in which HF electrical energy is transferred to the target tissue using ionized (conductive) argon gas (plasma), without the electrode coming in contact with the target tissue.
Argon Plasma Coagulation

Advantages:

- Non-contact application
- As target tissue becomes coagulated, current automatically seeks new conductive tissue resulting in uniform hemostasis
- Smoke is reduced
- Thinner eschar, more flexible
- Limited penetration depth of approximately 3mm
Argon Plasma Coagulation offers particular advantages for endoscopic applications, as it allows APC to be applied en face or tangentially, enabling less accessible areas to be easily treated.
Argon Plasma Coagulation

Three items needed for Argon Plasma Use:

- Sufficient voltage to jump the air gap
- Proximity to tissue: 1-5 mm
- Conductive tissue – moist surface, feeder vessels
Argon Plasma Coagulation

Scope Technique:

- Purge at least twice before placing the probe in the scope
- Advance the tip of the probe until the first black line is visible on the monitor
- Leave the probe stationary – move the SCOPE
- APC probe must always remain in the clinicians field of vision
- Activate only when the tissue being treated is within the field of view
Argon Plasma Coagulation

The extent of the thermal effect of APC on tissue depends on several factors:

<table>
<thead>
<tr>
<th>Factors Influencing the Tissue Effect</th>
<th>Very Important</th>
<th>Less Important</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Duration of Activation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Power Setting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Probe Distance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Argon Plasma Coagulation

Thermal effect - Mode chosen

APC has evolved through specialized modes with more controllable thermal effect:

Pulsed 1 APC: pulses one time per second and used for focused coagulation

Pulsed 2 APC: pulses 16 times per second and used for wide spread coagulation

Forced APC: Constant beam and often used for devitilization of tissue
Argon Plasma Coagulation

Modes

Precise APC:

The Precise mode creates a superficial coagulation effect using a low-energy output and is therefore suitable for temperature-sensitive, thin-walled areas.

Due to its ability to auto-regulate the beam, it can also be used on patients with increased peristalsis.

Argon Plasma Coagulation

Application techniques:

Static:
- The probe is focused in one single area, thermal penetration will increase over time
- If applied for long periods of time in the same area, carbonization and vaporization can occur
- For superficial treatment, short activation times of 1 to 2 seconds are used

Dynamic:
- The probe is moved with paintbrush-like strokes over the target area while observing the target tissue effect
Argon Plasma Coagulation

GI Thermal Tissue Sensitivity

<table>
<thead>
<tr>
<th></th>
<th>Less Sensitive</th>
<th>More Sensitive</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Stomach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Rectum</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Esophagus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4. Colon (Not including Duodenum or Cecum)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Duodenum / Small Intestine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6. Right Colon / Cecum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
APC GI Clinical Applications

Gastroenterology Uses found in Clinical Literature

- Radiation Induced Proctopathy
- Watermelon Stomach (GAVE)
- Treatment of Residual Adenomatous Tissue
- Stent Shortening (e.g. migrated stents)
- Strictures
- Exophytic Benign or Malignant Tumors
- Oozing from Vascular Lesions (e.g. Angiodysplasias, Arteriovenous Malformations (AVMs), Telangiectasias)
Argon Plasma Coagulation

Gastroenterology Uses found in Clinical Literature

References:

Argon Plasma Coagulation

Gastroenterology Uses found in Clinical Literature

References:

APC GI Clinical Applications

Palliative Management for Esophageal Tumors

Before

Post APC
The purpose of endoscopic thermal devitilization is to remove premalignant columnar epithelium so that it can be replaced by normal squamous epithelium, thus reducing the risk of malignant transformation.

Note: The use of APC technology for the eradication of Barrett’s epithelium is currently under investigation.
APC GI Clinical Applications

APC for Watermelon Stomach – Gastric Antral Vascular Ectasia (GAVE)

Before

During APC

Post APC
APC GI Clinical Applications

APC for Radiation Proctopathy

- **Before** – Patient was on regular blood transfusions
- **POST** – No transfusions were required for 6 months
APC GI Clinical Applications

AVM’s (Arterial / Venous Malformations)

- APC is used in all areas of the GI tract to treat AVM’s

- Low power applications and superficial APC mode selection helps to minimize the risk of perforation in thin walled areas (cecum, small bowel) where angiodysplasias often occur

Gastric AVM before APC

After APC
APC GI Clinical Applications

Snare Adenoma of Cecum APC Polyp Bed Ablation

1. Adenoma of Cecum
2. Adenoma Injected
3. Adenoma Snared (piecemeal)
4. Ablation of Bed with APC

Long term clinical study results show 50% reduction in re-growth.

Submucosal injection provides an additional cushion to protect the muscularis and also aids in dispersing electrosurgical current during electrosurgical procedures, including APC.

• Self-expanding metal stents may become displaced causing bleeding or ulceration.

• Although this is an off-label use, the projecting ends of the metal stent have been shortened (“trimmed”) using APC with short activations.

Note: Literature reported during ex-vivo testing, with long activations of APC trimming Permalume (silicone) covered Wallstents, flaming of the Permalume was noted.

APC GI Clinical Applications

Clinical Video: Telangiectasia
APC Pulsed Effect 2
APC GI Clinical Applications

Clinical Video: GAVE
APC Pulsed Effect 2
APC Pulmonary Clinical Applications

Pulmonary Uses found in Clinical Literature

- Granulation Tissue
- Bleeding / Hemoptysis
- Exophytic Tumors
- Stent Over-growth/In-growth

References:

APC Pulmonary Clinical Applications

APC for Malignant Stenoses in the Pulmonary Tract

- APC For tumor ablation, offers palliative improvement of life-threatening stenoses
- Subsequent therapy may consist of radiotherapy and/or chemotherapy, stent implantation or surgery
- Eschar is often removed by forceps or cryotherapy probe
APC Pulmonary Clinical Applications

Hemostasis

Before

During

Post APC therapy

APC may be used for hemostasis of bleeding tumors, and after biopsies are taken in the pulmonary tract.
APC Pulmonary Clinical Applications

Stent In-growth and Over-growth

- Tumor in-growth/over-growth - short activations allow tissue to cool and shrink, helping to manage transfer of thermal energy to the stent
- APC may be used to treat stenoses, making subsequent stent placement easier
APC Pulmonary Clinical Applications

Clinical Video: Endobronchial Tumor Ablation
Pulsed APC Effect 2
Nursing Considerations for Clinical Safety
Clinical Safety: Argon Plasma Coagulation

Emphysemas, Embolisms and Perforations:

- ALWAYS verbally confirm settings prior to activation and document confirmation.

- Avoid probe contact with the tissue

- Keep 1-5 mm distance between probe and tissue during activations

- Activation in static applications should be short (1-2 sec)

- Output settings, mode, and application durations should be based on clinical indications, anatomical location and wall thickness
Clinical Safety: Argon Plasma Coagulation

Emphysemas, Embolisms and Perforations:

- Use the lowest possible settings and gas flow rates
- Avoid activating an APC probe near a metal clip or metal stent
- Avoid over-distention of the GI Tract through brief and repeated aspiration of gas
- Avoid aiming the probe directly at large, open vessels
Clinical Safety: Bowel Preps

What nurses should know about preps:

- Incomplete Preps or enema-only preps for Flexible Sigmoidoscopy increases the risk for bowel explosions

- Bowel explosions can occur with ANY monopolar electrosurgery (e.g. snare, APC, hot biopsy) when combined with hydrogen and methane gases in a dirty colon

- Patients should be fully prepped
Clinical Safety: Oxygen Management

Preventative measures to avoid combustion

Oxygen Management:

Maintain oxygen concentration at a safe level

- **Conscious Sedation Patient**
 Supplemental nasal cannula
 O\(^2\) at 3 L/M or LOWER
 Mask delivery is considered high risk

- **Intubated Vent Patient**
 Supplemental O\(^2\) Concentration should be reduced to 40% or less

- **Activation**
 Activate APC during the patient’s exhalation phase, or during apnea

Combustion requires heat source, fuel, and oxygen
Dispersive Electrodes

The Dispersive Electrode Should NOT Be Placed Over:

- Boney prominences
- Scar tissue – including Tattoos
- Skin/Scars over an implanted metal prosthesis
- Hairy surfaces – clip if necessary
- Lotions or oils on skin
Dispersive Electrodes

Mono Pads bypass the pad safety systems of generators...

MONO Foil or Single pad:

Performs only completion of the electrical circuit.

- The current density of the pad edges is not measured
- The correct orientation of the pad is not measured
Dispersive Electrodes

A *Dual Foil or Split Pad:*

- Completes the electrical circuit
- Disperses the current density
- Engages the safety system of the unit
Dispersive Electrodes

Why did this patient receive a pad site burn?
Dispersive Electrodes

FDA Data Update: MAUDE

(Manufacturer And User Facility Device Experience)

- Hospital Reports of Burns, accessory damage causing injury, staff injuries, fires, and jewelry injury.

Accounts of PREVENTABLE accidents

www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfMAUDE/search.cfm
Alternate Site Burns

Electricity Always Seeks Ground....

- Observe skin touching conductive objects - IV poles, metal bed rail parts
- Watch for fingers, toes, ankles, and elbows touching metal
- Check for arms over bedrails and hands grasping handrails
- Separate all wires, including heart monitor wires from active cords and dispersive electrode cords
Clinical Safety: Jewelry

Jewelry Removal:

- ESU Manufacturers and clinical guidelines recommend removing ALL pierced and non-pierced jewelry, if within the clinical circuit

- Removal helps to:
 - Avoid Burns
 - Avoid accidental injury
 - Lower staff liability

Navel and genital jewelry can be in the circuit, increasing risk of burns

Tongue studs can damage scopes and impede intubation in an emergency
Body modifications require special attention for maintenance of the patients skin integrity...

Trans-dermal/micro-dermal implants

Sub-dermal implants

Additional risks are posed due to:
- Patient positioning
- Patient transfers
- Electrosurgery use and pad placement
Clinical Safety: Pacemakers, ICDs, IEDs

Advance Preparation:

- Physician offices and/or Pre-Admission phone calls MUST collect information
- Patient Pacemaker ID card
- Pacemaker, ICD, IED policy and decision tree
Clinical Safety: Pacemakers, ICDs, IEDs

Basic Safety:

- Use Bipolar when possible
- Keep 15 cm between the active electrode and any EKG electrode
- Have resuscitation equipment at the ready – DOCUMENT
- Have the device clinical support line available
- Contact the IED manufacturer for specific deactivation recommendations
Clinical Safety: Pacemakers, ICDs, IEDs

If the physician must use Monopolar current:

- Place pad on opposite lower extremity
- Use the lowest setting possible
- Use the shortest activations possible
- If the ICD is deactivated, re-establish integrity of the device post-procedure*

* IMPORTANT FOR RISK MANAGEMENT
Neuromuscular Stimulation

Unintentional electrical stimulation of the patient’s nerves and muscles caused by demodulation of the electrical current

- Loose wires
- Broken wire bundles
- Defective/broken adapters
In Conclusion

Thank you for allowing me to share this information with you today.

May your devotion and knowledge serve your patients well.